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L iquid Crystals, 1997, Vol. 23, No. 5, 741 ± 748

Modelling of the simple shear ¯ ow of a ¯ ow-aligning nematic

by GRZEGORZ DERFEL* and BARBARA RADOMSKA

Institute of Physics, Technical University of è oÂ dzÂ , ul. WoÂ lczanÂ ska 223,
93-005 è oÂ dzÂ , Poland

(Received 20 May 1996; in ® nal form 14 June 1997; accepted 24 June 1997 )

The shear ¯ ow induced deformations of a nematic liquid crystal layer have been modelled
numerically for the case of ¯ ow-aligning nematics. The director deviation from the plane of
shear, which was predicted earlier for special surface orientation angles, has been con® rmed.
This deformation takes a form of director rotation about the axis perpendicular to the layer
plane. As a result, transverse ¯ ow of the nematic arises. The rotation angle is close to p at
suYciently strong shear stress, and the director is oriented at the usual ¯ ow alignment angle
in a signi® cant part of the layer. The director coming out of the shear plane should not be
treated as a separate eVect taking place during the ¯ ow, but rather as a way in which the
usual ¯ ow-aligned structure is achieved.

1. Introduction lation. We have found that the director rotates about
the axis perpendicular to the layer plane. This rotationThe shear ¯ ow induced alignment of nematic liquid

crystals, characterized by the viscosity coeYcients ratio generates the usual ¯ ow-aligned structure, which prevails
in the layer at suYciently high stress. Therefore, thea3 /a2>0, is a well known phenomenon [1]. Under the

in¯ uence of the viscous torque, the director n forms an director deviation from the shear plane should not be
considered as a separate eVect taking place during ¯ ow,angle hc against the direction of ¯ ow
but rather as a way in which the usual ¯ ow-aligned

hc=arctan [ (a3 /a2 )
1/2] . (1 )

structure is achieved.
However, even in simple shear ¯ ow, the variety of
possible eVects is still not recognized comprehensively.

2. MethodThe initial director orientation within the plane of shear,
The calculations were performed for an in® niteimposed by the boundary interactions, was found to be

layer with strong boundary anchoring. One-dimensionalcrucial for shear ¯ ow induced deformations [2 ± 4]. In
deformations were assumed. Director distributions inrefs [2] and [3], director con® gurations con® ned to
the sheared layer were calculated for various surfacethe shear plane were assumed. Two distinct types of
induced orientations and shear stresses.deformations were found. They were characterized by

The nematic liquid crystal was characterized by thehigh shear stress induced alignment angles equal to hc
elastic constant ratios kt=k22 /k11 , kb=k33 /k11 and theand hc Õ p, respectively. The former structure was realized
viscosity coeYcients ratios ai /a2 , i =1 ¼ 6. The ¯ ow-if the boundary orientation angle hs varied in the
aligning nematic, i.e. the material with a3 /a2>0, wasrange (p/2, Õ hc ). The latter con® guration took place
considered. The material was con® ned in a layer ofif hs× (Õ hc , Õ p/2), and was related with much larger
thickness d between two plates parallel to the xy planeelastic energy. The elastic deformation was especially
and positioned at z =Ô d/2 . The lower plane was at reststrong if hs was slightly smaller than Õ hc . However, as
while the upper moved along the y axis under the actionwas shown qualitatively in ref. [4], the ¯ ow alignment
of a constant shear stress t. The stationary directoreVect has a diVerent character, since the director may
distribution in the deformed layer was described by twocome out of the plane of shear, but only if the shear
angles: the tilt angle, h(z) , between director and itsstress exceeds a certain threshold value. Coming out of
projection nxy on the xy plane, and by the deviationthe shear plane should occur if hs takes a value from
angle, w(z) , between nxy and the y axis ( ® gure 1). Thesome range contained in (Õ hc , Õ p/2).
angle h(z) was a measure of the director deviation fromIn the present work, we studied the shear ¯ ow align-
the xy plane. The angle w(z) stood for the directorment eVect quantitatively by means of numerical simu-
rotation about the z axis, and was a measure of the
deviation from the shear plane yz. Boundary conditions
were determined by rigid anchoring, identical at both*Author for correspondence.
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742 G. Derfel and B. Radomska

where

P =
1

2
[ 2a1n

2
y n

2
z + (a5 Õ a2 )n

2
z + (a3+a6 )n

2
y +a4]

(8)

Q =
1

2
[ 2a1 nxnyn

2
z + (a3+a6 )nxny] (9)

R =
1

2
[2a1 n

2
xn

2
z + (a5 Õ a2 )n

2
z + (a3+a6 )n

2
x +a4]

(10)

and s is the transverse shear stress appearing if the
director deviates from the shear plane, i.e. if nx Þ 0 or
w Þ 0. The value of s is determined by the ǹo-slipFigure 1. The geometry of the system.
condition’

plates. Surface director orientation was determined by P
d/2

Õ d/2
wdz =0 (11)

the easy axis versor e, which lay in the yz plane and
formed the angle hs against the y axis. The anchoring which leads to
free energy per unit area of the layer was assumed in
the Rapini± Papoular form

Fanchoring=Õ (W /2 ) (ne)
2 (2 ) s =t

P
d/2

Õ d/2

Q

D
dz

P
d/2

Õ d/2

P

D
dz

(12)

where W is the anchoring strength coeYcient.
In general, the stationary state in the sheared layer

results from the balance of the elastic and viscous torques where D =PR Õ Q
2.

in the bulk, and the elastic, viscous and surface torques The surface torque is expressed by
at the boundaries.

C anchoring=W (n ¯ e) (n Ö e) . (13)The elastic torque is

C elastic=n Ö h (3 )
In our computer model, the continuous h(z) and w(z)

where h is the molecular ® eld. Its components are given functions were represented by a set of discrete values h
i

by and w
i determined in N equidistant planes positioned

at z
i=Õ d/2 + (i Õ 1 )d/(N Õ 1 ) , where i=1 ¼ N . Each

h j=
qgelastic

qn j
Õ

q
qz

qgelastic

qnj,z
(4 ) pair (h i

, w
i) was assigned to a sub-layer attached to each

of the N planes. There were N sub-layers ( ® gure 2).
Two of them, of thickness d/[2 (N Õ 1 ) ], were adjacentwhere gelastic is the Frank elastic free energy density and

nj,z=qn j /qz and j ; x, y, z. to the boundary plates, and the remaining N Õ 2 sub-
layers, of thickness d/(N Õ 1 ) , were placed in the bulk.The viscous torque is expressed by the viscous force f ¾ :
The values h

i and w
i were used for calculation of the

C viscous=n Ö f ¾ . (5 )
torques per unit volume which aVected the director in
the ith sub-layer. For each of the inner sub-layers, theThe components of f ¾ are
sum of the elastic and viscous torques, given by equations
(3) and (5) was calculated, while for the boundary sub-
layers, the third torque due to the surface anchoring

f ¾x=a2 wnz

f ¾y=a2unz

f ¾z=a3 (uny+wnx )

(6 )
[equation (13)], was added.

The initial values of the angles were set to zero,
whereas the initial angles w

i were determined by thewhere u =qny /qz and w =qnx /qz. The velocity gradients
u and w are given by the Navier± Stokes equations formula w

i=w0 sin[p (i Õ 1 )/(N Õ 1 ) ], where w0 close to
p/2 was chosen. The ® nal set of angles, which approxi-
mated to the real stationary director distribution due to

t=uP +wQ

s =uQ +wR
(7 )

the equilibrium state, was calculated in the course of an
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743Flow alignment of nematic layers

Figure 2. Planes and sub-layers distinguished within the layer.

iteration process. The values h
i and w

i were varied the transverse shear stress s, the eVective viscosity g,
and the longitudinal and transverse velocity pro® les ny (z)sequentially. The new values were accepted if they gave

a small absolute value | C i | of the torque per unit volume and nx (z) were determined for various values of the
longitudinal shear stress t. The functions h(z) and w(z)in the ith sub-layer. This procedure was repeated until

the sum of all | C i | decreased below some suYciently low were always even, due to the symmetry of the problem,
whereas the transverse velocity distribution functionsvalue e in terms of the required accuracy. [In our

calculations e=10 Õ
4 while N =64 gave a satisfactory nx (z) were odd. In the following, the results are presented

in dimensionless form, obtained by means of suitableapproximation of the continuous h(z) and w(z) functions.]
The set of angles obtained in this way for some value of choice of units, i.e. d as the unit for distance, a2 for

viscosity, k33 p
2
/a2d for velocity and k33 p

2
/d

2 for stress.the shear stress served as a starting point to computations
of another shear stress value.

Some details concerning the use of the formulae 3.1. Planar and homeotropic layers
In both cases, the director orientations at any stressmentioned above are given in the Appendix.

The director distribution allowed calculation of the are limited to the plane of shear. The mid-plane angles
hm tend to hc , with increasing shear stress. The resultseVective viscosity coeYcient
are present in ® gure 3, where the pro® les h(z) are plotted
for various dimensionless stress t =td

2
/p

2
k33 , and ing =

td

P
d/2

Õ d/2

tR Õ sQ

D
dz

(14)
® gure 4, where the hm angles are plotted as functions of t.
The eVective viscosities vary smoothly with increasing t

( ® gure 5 ).
and the velocity components

3.2. Oblique orientations
nx (z)= P

z

Õ d/2

sP Õ tQ

D
dz (15) The most interesting eVects are expected for hs close

to Õ hc [4], since the value Õ hc separates two ranges

ny (z) = P
z

Õ d/2

tR Õ sQ

D
dz. (16)

The integrations in the above expressions were performed
numerically by use of the values h

i and w
i.

3. Results

The ¯ ow-aligning nematic with a3 /a2=0 0́1 was
considered. The other material constants were: kb=1 2́,
kt=0 4́, a1 /a2=Õ 0 0́8, a4 /a2=Õ 0 6́2, a5 /a2=Õ 0 8́0 and
a6 /a2=Õ 0 2́1. The dimensionless parameter c=W d/k11 ,
describing the anchoring strength, was equal to 2 Ö 105.
The computations were carried out for ® ve surface
orientations: planar, homeotropic and three oblique, with
the surface orientation angles hs=0, hs=p/2, hs=Õ 0 3́,
hs=Õ 0 1́1 and hs=Õ 0 0́95 rad, respectively. The two
latter values are close to the critical angle Õ hc , which Figure 3. Director distribution h (z) plotted for various shear
takes the value hc=0 0́997 rad. For each case, the director stresses t in the homeotropic (hs=p/2), planar (hs=0),

and oblique (hs=0 0́95 ) layers.distributions described by the functions h(z) and w(z) ,
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744 G. Derfel and B. Radomska

In this case two regimes of the shear stress can be
distinguished. At low t, the director does not deviate
from the shear plane. Above certain threshold stress, the
emergence from the shear plane appears, i.e. the director
rotates about the z axis. Twist deformations, with opposite
sense of twist in both halves of the layer, arise; the
corresponding functions h (z) and w(z) are shown in
® gure 6. The deformation can be characterized by the
mid-plane values of both angles. The threshold behaviour
of the mid-plane rotation angle wm is presented in
® gure 7; two senses of rotation are possible. The angle
hm is plotted in ® gure 4 as a function of t; the threshold
is revealed by the cusp on the hm ( t) curve. The structure
of the layer is illustrated in ® gure 8 by means of cylinders
symbolizing the director. At high stress, the director in
the middle part of the layer tends to the ¯ ow induced
orientation wm � p and hm � hc (which is identical
with hm � hc , wm � 0, due to the macroscopic physical
equivalence of the director vectors n and Õ n) . The twist
deformation is concentrated in the thin layers adjacent
to the boundaries. A distribution of this kind results in
signi® cant transverse stress s, as illustrated in ® gure 9;Figure 4. Mid-plane orientation angles hm as functions of
two senses of director rotation give opposite directionsshear stress t for ® ve surface orientations hsp/2, 0, Õ 0 0́95,
of s. The behaviour of the eVective viscosity is shownÕ 0 1́1 and Õ 0 3́ rad.
in ® gure 5, where g is plotted as a function of the
longitudinal stress t.

Similar behaviour was found for the somewhat more
tilted surface orientation hs=Õ 0 3́. The results are
presented in ® gures 4, 5, 7, 9 and 10. The director also
comes out of the shear plane when the threshold stress
is exceeded. The cusp on the hm ( t) curve is very pro-
nounced; the cusp on the g( t) curve also marks the
emergence from the shear plane. [A similar singularity
on the g ( t) curve is present for hs=Õ 0 1́1 rad, but is
not visible in ® gure 5.]

The peculiar eVects presented above do not occur
when the surface orientation angle hs is slightly bigger
than Õ hc . For instance, if hs=Õ 0 0́95, the director does
not deviate from the shear plane; the structure of the
layer varies smoothly with increasing t. The correspond-
ing curves are presented in ® gures 3 and 4. The g( t)

dependence does not diVer signi® cantly from that
obtained for hs=0 ( ® gure 5).

3.3. Velocity pro® les
For a shear stress t lower than the threshold, the

nematic liquid crystal ¯ ows along the y axis; aboveFigure 5. EVective viscosities g as functions of shear stress t

for ® ve surface orientations. (The curves for hs=0 and the threshold stress, transverse ¯ ow appears, due to the
hs=Õ 0 0́95 rad coincide approximately.) director deviation from the shear plane. Figure 11 shows

several examples for hs=Õ 0 1́1. Transverse velocity
pro® les for hs=Õ 0 3́ are shown in ® gure 12. Theof surface orientation angles, for which two diVerent
longitudinal velocity ny (z) increases monotonically withmodes of deformation develop. The angle hs=0 1́1 rad,

which is slightly smaller than Õ hc , is the ® rst example. z, as exempli® ed in ® gure 13 for the same surface align-

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



745Flow alignment of nematic layers

Figure 6. Director semi-pro® les h (z) [ left] and w (z) [right] for hs=Õ 0 1́1 rad. The reduced shear stress values are indicated for
each curve.

Figure 7. Mid-plane orientation angles wm as functions of
shear stress t for two surface orientations, hs=Õ 0 1́1 and
Õ 0 3́ rad. Both signs of the deviation angles are equivalent
due to mirror symmetry with respect to the shear plane.

ment angle. The transverse velocities are about two
orders of magnitude smaller than the longitudinal.

4. Discussion

In this paper, one-dimensional deformations of the
sheared nematic layer have been studied numerically. Figure 8. Structures of the deformed layer at three shear
The previously predicted director deviation from the stress values, hs=Õ 0 1́1 rad.
plane of shear was con® rmed. The director pro® les h(z)

and w(z) were calculated for various shear stresses and
surface orientations; the transverse shear stress, eVective stress was given. It was found that the con® guration in

which the director lay in the plane of shear lost itsviscosity, and longitudinal and transverse velocity pro® les
ny (z) and nx (z) were found. stability under increasing shear stress. Equilibrium states

above the threshold had not been determined in ref. [4]The director emerging from the shear plane was
predicted earlier from qualitative considerations based due to the limitations of the approach applied.

In the present paper we have found such stateson catastrophe theory [4]. The threshold character of
this eVect was revealed and the formula for the threshold numerically. Their stability can be studied by means of
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746 G. Derfel and B. Radomska

Figure 9. Transverse shear stresses s as functions of t for two Figure 12. Transverse velocity pro® les nx (z) for hs=Õ 0 3́ rad.oblique orientations, hs=Õ 0 1́1 and hs=Õ 0 3́ rad. Two The reduced shear stress values are indicated for each curve.branches for each hs value correspond to two signs of the
deviation angles w.

Figure 10. Director semi-pro® les h (z) [ left] and w (z) [right] for hs=Õ 0 3́ rad. The reduced shear stress values are indicated for
each curve.

Figure 13. Longitudinal velocity pro® les ny(z) for hs=Õ 0 3́ rad.Figure 11. Transverse velocity pro® les nx (z) for hs=Õ 0 1́1 rad.
The reduced shear stress values are indicated for each curve. The reduced shear stress values are indicated for each curve.
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747Flow alignment of nematic layers

analysis of the total free energy per unit area of the
layer, related to the director distributions for which
w(z) Þ 0. For this purpose we have described approxi-
mately the deviation from the shear plane by the trial
function w(z) =w0 cos(pz/d ) . For the sake of simplicity,
the surface orientation hs=Õ hc was chosen, since it
gives the known equilibrium uniform con® guration at
any shear stress [3, 4]. Under this condition, the
deformation takes a form of pure rotation about the z

axis and the free energy density g can be calculated as

g = P w

0
Cz dw (17)

where Cz is the z component of the total torque density
[4]. The total free energy Figure 15. Bifurcation of the equilibrium states of the deformed

layer. The dotted line denotes unstable equilibrium states.

G = P
d/2

Õ d/2
gdz (18)

depends only on the single variable w0 . We performed
derived in ref. [4] is 0 8́15; this small discrepancy isthe integrations in equations (17) and (18) numerically
probably due to the simpli® cations made in ref. [4].for various w0 and t, leading to a set of G (w0 ) functions

For reasonable parameters of the sample (d=for several shear stresses ( ® gure 14). This set of functions
10 � 100 mm, k33 =10 Õ

11 N), the reduced threshold shearillustrates the behaviour which is characteristic for sys-
stress t of the order of 1 yields tthreshold#1 � 10 Õ

2 N m Õ
2,tems described by the cusp catastrophe [5]. Bifurcation

which corresponds to the velocity of the upper plate V =of the stable states evident for this case corresponds to
V threshold=10 Õ

3 � 10 Õ
4 m sÕ

1, respectively. Experimentalour results presented in ® gure 7. Therefore we are con-
evidence of the director rotation out of the shear planevinced that the deformed states which we have found
can be troublesome to achieve. First, a suitable surfaceare stable and that there are no other stable states, at
orientation angle hs is necessary; then the use of conos-least in the vicinity of the threshold. The study of the
copic observations is required to determine the directorfunction G (w0 ) allowed determination of the threshold
rotation [6]. Measurement of the eVective viscosityshear stress, tc=0 7́7. This value coincides with results
coeYcient as a function of t in the vicinity of thewhich were obtained by the torques balance method
threshold could serve as an alternative way of detectionapplied for hs=Õ 0 9́97 and which are shown in
of the deviation from the shear plane. Our calculations® gure 15. The value calculated by use of the formula
were restricted to defect-free deformations, but produc-
tion of disclination loops disturbing the ¯ ow alignment
can be expected [6, 7].

The one-dimensional deformations considered in this
paper are adequate for the in® nite layer. We believe, that
the results obtained here approximate properly to the
behaviour of a liquid crystal in real ® nite layer, since the
transverse velocities are about two orders of magnitude
smaller than the longitudinal. One may expect that their
in¯ uence on the director distribution is negligible. The
transverse eVects can be ignored and the results obtained
here can be treated as adequate for experiments in which
the lateral layer boundaries prevent transverse ¯ ow.

Summarizing, emergence from the shear plane should
not be treated as a separate eVect appearing during the
¯ ow, but rather as a way in which the usual ¯ ow-aligned

Figure 14. Total free energy of the deformed layer for various
structure is approached. This way is realized whenshear stresses as a function of deviation amplitude w0 .
suitable boundary conditions are imposed and when aThe reduced shear stress values are indicated for each

curve. relatively small twist elastic constant makes it preferable.
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748 Flow alignment of nematic layers

Appendix where u
i=qn

i
y /qz and w

i=qn
i
x /qz, and a3=a3 /a2 . The

Detailed form of the governing equations velocity gradients u
i and w

i for each sub-layer were
Our aim was to ® nd the stationary director distri- calculated by solving the set of equations (7) written in

bution realized under the action of longitudinal shear dimensionless form
stress t. In this equilibrium state, the total torque acting
on the director should vanish at every point of the layer.

t =u
i
p

i+w
i
q

i

s=u
i
q

i+w
i
r

i H (A15)
We approximated the real director distribution by the
angles h

i and w
i assigned to each of the N sub-layers. where

Starting from some initial values of these angles, we
were able to calculate the total torque C

i per unit
p

i=
1

2
[2a1 n

i2y n
i2z + (a5 Õ 1 )n

i2z + (a3+a6 )n
i2y +a4]

volume in the ith sub-layer. In order to achieve the
zero torque structure, the sum of the absolute values

(A16)| C i | was decreased by sequentially varying h
i and w

i

during the iterative process. The set of h
i and w

i which
q

i=
1

2
[2a1 n

i
x n

i
y n

i2z + (a3+a6 )n
i
xn

i
y] (A17)gave a suYciently low sum, S

N
i=1 | C i |, was taken as the

equilibrium state sought.
The torques for the ith inner sub-layer are given by

r
i=

1

2
[ 2a1 n

i2x n
i2z + (a5 Õ a2 )n

i2z + (a3+a6 )n
i2x +a4]

C
i= C

i
elastic+ C

i
viscous for 1< i <N (A1)

(A18)and for the boundary sub-layers by

and ak =ak /a2 . The dimensionless form s of the trans-C
1= C

1
elastic+ C

1
viscous+ C

1
anchoring (A2)

verse stress s was obtained by numerical integration
C

N= C
N
elastic+ C

N
viscous+ C

N
anchoring . (A3)

[equation (12)]
The elastic torques given by equations (3) and (4)

were expressed by

C
i
elastic=n

i Ö h
i
. (A4) s= t

�
N Õ 1

i=1 A q
i

d
i +

q
i+1

d
i+1B

�
N Õ 1

i=1 A p
i

d
i +

p
i+1

d
i+1B

(A19)

The components of n
i and h

i were as follows

n
i
x =cos h

i sin w
i (A5)

where d
i=p

i
r

i Õ q
i2.

n
i
y=cos h

i cos w
i (A6) The boundary conditions were chosen to be identical

on both plates. Therefore, the surface torques, calculatedn
i
z= sin h

i (A7)
for the two sub-layers adjacent to the boundary plates

h
i
x =Õ 2ktn

i
y n

i
x,zn

i
y,z+ ( 2kt Õ kb )n

i
xn

i2y,z Õ ktn
i2y n

i
x,zz and referred to unit volume, were expressed by

+ (kt Õ kb )n
i
xn

i
yn

i
y,zz Õ 2kbn

i
zn

i
x,zn

i
z,z

C
i
anchoring=2

W d

k11
(N Õ 1 ) (n

i¯ e
i
) (n

i Ö e
i
) , i=1 or N

Õ kb (n
i2x +n

i2z )n
i
x,zz Õ kb n

i
x n

i2x,z (A8)

(A20)h
i
y=Õ 2ktn

i
xn

i
x,zn

i
y,z+ ( 2kt Õ kb )n

i
yn

i2x,z Õ ktn
i2x n

i
y,zz

where the easy axis versors had the components+ (kt Õ kb )n
i
xn

i
yn

i
x,zz Õ 2kbn

i
zn

i
y,zn

i
z,z

e
i
x =cos h

i
s sin w

i
s (A21)Õ kb (n

i2y +n
i2z )n

i
y,zz Õ kbn

i
yn

i2y,z (A9)

e
i
y=cos h

i
s cos w

i
s (A22)h

i
z=kb (n

i2x,z+n
i2y,z)n

i
z Õ n

i
z,zz (A10)

e
i
z= sin h

i
s . (A23)where n

i
j,k and n

i
j,kl denote the spatial derivatives of the

director components.
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